Although you might not like the taste, it comes with the high content of health-promoting glucosinolates (think broccoli, cauliflower, Brussels sprouts) and the dried leaf can be used in any similar foods or nutritional supplements where that taste is pleasant such as curries or other savory foods…
And, see below, may be best not to use hot water or to cook it.

A general precaution in any nutritional evaluation is described here for the traditional Ayurvedic herb combination Triphala: >The increased popularity of herbal remedies such as Triphala has led to dramatic improvements in the processing of crude plant materials that serve to maximize the absorption of otherwise poorly absorbed plant components. Despite these improvements, these preparations still display pronounced variability in efficacy, which is likely related to the natural variation in composition of gut microbiota species that catalyze the biotransformation of herbal components. This response variability is not unique to herbs and, in fact, may be the case for virtually all health-promoting compounds ingested by humans. >Polyphenols in Triphala modulate the human gut microbiome and thereby promote the growth of beneficial Bifidobacteria and Lactobacillus while inhibiting the growth of undesirable gut microbes. The bioactivity of Triphala is elicited by gut microbiota to generate a variety of anti-inflammatory compounds.

>Despite the recent advancements in chemotherapeutics, chemotherapy is still associated with severe adverse effects such as nephrotoxicity, nausea, hair loss, skin irritation, anemia, and infertility [38], [39]. Therefore, naturally occurring anticancer compounds from natural plants, especially those with low toxicity and high potency, have important implications for chemotherapy and chemoprevention.
>In the field of anticancer drug discovery and development process, compounds with the highest anticancer activities often have bulky hydrophobic groups within their chemical structures, rendering them water insoluble [53]. Low water solubility leads to both formulation issues and serious therapeutic challenges. Administering the poorly soluble drug candidate intravenously might result in serious complications such as embolism and respiratory system failure due to the precipitation of the drug [54], while poor absorption would result from extravascular dosing [55]. Therefore, increasing water solubility and/or developing soluble bioactive compounds with high anticancer activities have attracted increasing attention. In this study, I focused on the new water-soluble MOL extracts and examined its potential as an anticancer drug candidate.
>The reason why the difference in the cell cytotoxicity between cancer cells and normal cells is not clear at this time, but I think complex effects caused by some compounds in the extract can protect normal cells from severe cytotoxicity. Overall, these data suggest that the cold water (4°C)-soluble MOL extract may become a good candidate for anticancer therapy with high specificity and less adverse effects. In conclusion, I demonstrated that the soluble MOL extract may have be a new promising candidate for a natural anticancer drug. Further studies are required in this regard.
>Compared to the data, I had much greater inhibition rate of up to 90% by using cold-MOL extract (see Figure 2). The possible difference in anticancer activities between cold- and hot-DW treated MOL extract might be resulted from the heat inactivation of some bioactive molecules within M. olefeira leaves, but obvious reason needs to be clarified through further research.